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SUMMARY

This report describes applications of the method of

characteristics to supersonic flow about axially symmetric

al, open-nosed bodies, such as diffusers. A general proce-

dure is given for the computation of velocity distributions

on the external surface of axially symmetrical diffusers of

arbitrary shape. The case of straight-line diffusers is de-

veloped in more detail, including the case with incidence.

A special function is introduced which allows a quick ana-

lytical solution of the problem of straight-line diffusers.
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1. INTRODUCTION

The main purpose of this paper is the discussion of

the axially symmetrical supersonic flow past open nose dif

fusers (with the exception of the last section, where also

the solution for flow with an incidence angle is outlined).

The diffusers are assumed to have a sharp lip (see

figure 1) and such shape that the flow is isentropic and

may satisfy certain simplifying assumptions discussed in

section 2.

In discussing the flow past diffusers only the exter-

nal one is considered. For this to be justified, perfect

matching must be assumed; i.e. there is no "spillage".

The x,y reference system is chosen in such way

Y

u-Go

F ig. I

that the x axis coincides with the symmetry axis, and has

the same sense as the undisturbed flow velocity.

The local surface angles, formed by the tangent of
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the generator of the diffuser outer surface, with the sym-

metry axis, are called G .

All the conditions at .the nose point are designated

with the subscript "o";

e.g. y., E) u. , etc.

Notations and definitions follow those normally used.

Particularly

W - represents the value of flow velocity at any

point of the flow field.

W, - the value of velocity in the undisturbed region.

U,V - represent the horizontal and vertical compo-

nents of the velocity W, respectively.

u,v - represent the horizontal and vertical compo-

nents of the perturbation velocity.

Due to coincidence of the direction of W , and the x

axis, it is possible to form the following relations:

U C= W."

V = 0

U U, +u

V =v

The symbol P denotes cot i where is the Mach

angle; M-denotes the Mach inmber (P =/-T ) .By "Mach

lines" we shall understand the straight lines, tangent to

the characteristic lines. Both lines (Mach and character-

istic) are, of course, identical in the undisturbed flow

region.
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In later sections the "straight line diffuder" will

be separately discussed. By this name 'we shall iinderstand

those diffusers whose outer surface forms a straight:- jiie

in an axial section (see figure 7).

Here is a short outline of the,.'paper: " -f

In sections 2 to 8 the s imp! ied-characteristic eq-Qa

tions according to the Sauer-Ieinz' method are adapted to

diffusers.

Nets of Mach lines and equations for a-and V are es-

tablished for each point of net which allow the oca-hula

tion of these velocities from Imown data at former points

of net. Next, by means of algebrical transformations, the

v - components of pert T -tlon velocity are eliminatedand,

in special cases, solutions are found for u directly from

the geometrical position of the points ("the first Mach

line", see section 5).

After adapting the above described method to straight

line diffusers (section 9), the possibility is outlined of

solving this problem (i.e. of straight line diffusers) by

analytical means; this is facilitated by assuming a func-

tion O(x,e83) , defined by equation (16), section 10,

and its limit 0' (xl P for 0- 0 (section 11).

The next sections are dedicated to finding the numer-

ical values of function a (X, ) (section 12) and its

analytical form, first on the basis of formerly described

methods (section 13), and next, utilizing operational cal-
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culus (sections 14-16). There are obtained an exact solu-

tion-equation (39) and approximate solutions-equations(22),

(40) and (41).

In sections 17-18 the approximate solution of the u-

velocity distribution is given, not only for the diffuser

surface, but for the entire space around it.

Finally, in the last section, the solution of flow

with an incidence angle is outlined.

Graphs, ilustrating all more important results, are

enclosed.



Part One - GENERAL METHODS

L. THE DERIVATION OF THE SAUER-HEINZ EQUATION

The considerations of this section will be based on

the well known differential equation of the characteristics

for an axially symmetrical isentropic flow, namely:

dG - -- cot/. +- sirnj,"sLnu 0 (1)C

where the top signs refer to the differentiation along the

left running (L) - and the bottom - along the right run-

ning characteristic lines CR- see figure 2).

Fig. 2

Replacing the velocity 1 by its components U and v,

and the element dL by the expression +dy /h(M(rkj)

after some transformations, one gets:
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Scot (,u; 9)+ S C I = 0 (,

In order to simplify the above equation, two assump-

tions will be made; these are approximately equivalent to

the linear theory of V. Karman and Moore. These assumptions

are:

(i) - e , which means that angles 0 must

be relatively small, and Mach numbers not too

great.

(ii) - "=k. , that is, the Mach numbers are al-

most constant and equal approximately to M.

for the undisturbed flow.

The assumption (i) implies, obviously, that:

which enables to present equation (1') in a very simple fi

nal form:

The assumption (ii), which to a certain point is the

consequence of (i), means that all the Mach lines may be

treated as mutually parallel straight lines. This fact

makes the integration of the equation (2) considerably eas

ier.
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3. THE INTEGRATION OF TIE SAUER-HEINZ EQUATION

In order to perform the integration of equation (2),

let us choose a certain number of arbitrary points on the

body surface and draw therefrom left (L) and right running

(R) Mach lines, parallel to the Mach lines of the undis-

turbed flow. This procedure will create a "net" of Mach

lines which we shall call a Mach net.

I

//

Fig. 3

To facilitate the calculation, let us number the lines

of the Mach net in the manner shown in figure 3. Points,

which are the intersections of the left Mach line with num-

ber L and of the right one with number R, will be-designated

oy (L-,R).

Assuming that the distances between ne-ighboring points
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in the Mach net are small enough, we may write:

(L;R)f dU t:(i + Y 1
2 (Q L~

Y ( L;A + YL;R- LL L;R LL1',-an

2.
(I1R)

C - : r ~ ; UH;R})

thus, the result of integrating (2) may be written

-'rj (ny L1 R . j (YL;R + YLR.)( .Ir~) (3)

(v'f L; ) R+ (~~tL-I;R-)( :'L U.ril) (3 I)

the boundary condition is:

VK; = (400+ u.) tan ek = (u+ +.) E),

where 0. denotes the slope at point (K K).

The problem of determining flow velocities in the net

points will be now discussed in four parts according to



the position of the Doints.

4. THE DIFFUSER NOSE POINT

Let us choose two points on the same Mach line:. P on

the diffuser surface and Q in the undistrubed region (see

figure 14.)
\ 0

S/ \

/

/ \
/ ,

/ \,
.. . . .../

x

In order to calculate the velocity up it is possible

to use equations (3') and (3")

Solving these equations and assuming that P-- (0;0)

and S--(0;0), one gets immediately:

where the subscript "O" refers to the point (0;0). The

equation (1,) is, of course, equal to the result for a two

dimensional flow, deflected through an angle Oo . Obvious-
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ly, this must have been expected, considering that the prob

lem in the close neighborhood of the nose point is indeed

two dimensional.

5. POINTS ON THE FIRST MACH LINE (L=O)

In order to solve the problem for the first Mach line,

i.e. the Mach line with L=0, let us choose on it two points:

(O;R) and (O;R-1) (see figure 5)

y \ /

x, ,, Fg. 5a

/\\ // \\

/

On the right Mach line, starting from (O,R), let us

assume a point 9. Recalling that the flow is undisturbed

at Q. and assuming that Q. is approaching (O,R) (therefore

Y - ), one gets immediately from the right charac-

teristic equation:

o -,pK U7~ o~;R (9,
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It is evident that this relation is valid for all

points on the first Mach lineand particularly for (0,R-1),

which yields:

- i"yo;-i Y;' 1 UO;R-i (5')

Substituting values (5) and (5') into the equation (3),

one can calculate the value of Lta as a function of uo;,

U .- ,R (6 )° + - , ,  Lk O;R-i3 yoR + yo;P-1 (6)

It is possible, however, to obtain the value of

as a function of yo, only. For this purpose, let us call

0 : - -

The equation (6) becomes now

LA . R = ( L-y o;_'n-

Assuming that Ay-O and neglecting the second or-

der terms, the following differential equation is obtained

(omitting the subscripts)

__ W)
2 y
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whose solution is:

u.L- o (8)

where uo and Yo are the values at the diffuser nose.

6. POINTS ON THE DIFFUSER SURFACE

As to points (K;K) which lie on the diffuser surface,

admitting that the flow is reaching them with the right

Mach line (see figure 6) equations (3') and (3'') must be

\ /
\ /

"$ (K-I K)

Fig. 6

used. After solving them and eliminating (vy)K._,K by means

of equation (3), one gets

uhK =A B d .C a -e -Bera geKe.ri + CeX,K o n (9)

where A, B end.C are certain geometrical expressions depend
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ing on positions of points (K;K), (K-I;K), (K-1;K-I) and on

slopes of the diffuser surface at points (K;K) and (K-I;K-I)

Their values are:

AK I KIK + 2 Y K-i)K + YK-i;K-iAK;K = I.+ YK;K + yK-,I,<

B - ' (10)( 1.+ ) ,K. + Y K- , j<

c,.s,4  2(1.+ )(o,,O,, -

(i- T ) ~YI, + .K-,,K

Naturally, assuming a Mach net such that:

Yo-. - YoR-I = Yo;-, ;- = corIst = Ay

and denoting: Yk- K-4;-I )K the. values of

A, Band C may be p resented in a form more convenient for

numerical calculations, i.e.:

AKK = 4YIKK+2AY -3(&y)K
z(1+ )yKK +Ay -(A,))

B(i- ')Y ,+ , ' ,- .(14- 3(.,)K (1o,)B ,; - I - P VK'.X + AY -a')

2(1104+ V

C ( --);j Y K;k



14

As to the point (1;1), using the more accurate equa-

tion (5') instaed of (3),. one gets:

a- -) Yi'

7. THE INTERIOR POINTS OF THE NET

Solving equations (3) and (3') for

(v.i(VY)L; 1 +iJ Z('L; ) L LAR-:IP4L~t+ YL- I;R) (ii);r

writing

and utilizing directly equations (3) and (3') to calculate

the above expressions as a function of u, upon eliminating

the values of (vy) we get finally:
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U. .R = DL; .L -. -i L;, U; FLiR L L-- ".- (111)

where D, E, and F are certain geometrical expressions, de-

pending on the Mach net assumed. Their values are:

D3L: V L- ± L-41R-4
E 3 YL +yLr-i + y

FL Y 2L;R- YVLR- + 1 ;-4; J
F y. :+ L,vk +--4; '

Assuming the same Mach -et as in the former section,

the values of D, E, F may be presented in a simpler form:

D-. y +2A'j -3( ,/)..

DL;,R = + Z. IAY) L%,;,- Laj,

E L.R =- & > - (t ) ( 1 2,)

FL~R L
E ; L ,,- (A y).
FU,-, P.=-J I 3 (A',/) L-

Calculating particularly the points of the "second"

Mach line (iie. irith L = 1), in order to eliminate the
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values (vy), it is possible to use equations (5) and (5')

-more exact- instead of (3)4 Thus:

(i' ) o;R - fY 11 R- 'YO;R- I LkO R- J3 k ~O-R +

--- P (''i;R-1 + Lk~t.i)L 0'-i- ,~OR-4')

Substituting this expression into equation (11), and

solving it for uIf , one gets:

Lk;R - E. Lt
4 ,4R- 4 G4;,'(Uo.;R.-- LLO-,I)

where the value of E,;, is determined by formula (12') and

As to expression (UoIR-4 - U o; r) in equation (11"),

it is possible to present it in the form -see equation

(7)-:

ko./,,-4 .. ;R Oo-4

The equations (4) and (8) enable to calculate the

u-velocity directly from the geometrical positions of

points, and the equations (9), (9'), (11'), (11") - from

the known data at former points of the Mach net.
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8. A PRACTICAL PROCEDURE TO CALCULATE THE VELOCITY DISTRIBU

TION ALONG THE SURFACE OF A DIFFUSER

The practical procedure may be presented as follows:

On the first Mach line of a diffuser one chooses cer-

tain number of equidistant points (including the nose point)

so that the Mach net, starting from these (see figure 3)

covers the entire region where the velocity distribution is

to be calculated.

After finding from equations (10') the coeficients A,

B and 0 for all surface points, and D, E, F from equations

(12') for all interior points, one finds the velocities u

at different net points, in the following order:

(in) - nose point - equation (4)

(ii) - points on the first Mach line - equation (8)

(iii) - point (1;1) next to the nose on diffuser sur-

face - equation (9')

(iv) - points on the Mach line L = 1, issuing down-

stream. from point (1;1) - equation (11")

The procedure described in items (iii) and (iv) is

next repeated in the same order with respect to other sur-

face points - equation (9) - and lines L = const - equation

(11') - issuing therefrom, till the last net point in the

diffuser surface is reached.

It is necessary to mention here that in order to ob-

tain the velocities u for n points on the diffuser sur-
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face, they 'must be determined also for -Iri(n-'±) remaining

net points. So, on the one hand, the more dense is the

Mach net, the more accurate the results will be, but, on

the other hand, the amount of work r~quired increases con-

s id erably.
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Part two - STRAIGHT LINE DIFFUSERS

9. ADAPTATION OF THE METHOD TO STRAIGHT LINE DIFFUSERS.

In case of a straight line diffuser the amount of

work may be reduced, assuming that the distance between

two neighboring net points on the surface of the diffuser

is constant (see figure 7). Thus, the x co-ordinates of

these points will be K.m, where K = 0;1;2; ..., and m is

certain arbitrary length on which depends the net density

and, therefore, the accuracy of the solution.

S ' , /

F I
/ \ / \ / \\ /

/ \ / \ /
/ \\ / " \ / \f

/ / N \ I
N / ',I/ I \

/ P,. Fi! 7

It results from geometrical relations, that (-.sec--

tion 4):
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(AY), CO0~ t -- rrttoitr a

Ay i )

Substituting these values into equations (8), (9),

(9'), (ii'), and (II), and dividing them by L0 one gets:

FA For the f irst Mach line:

4

L [ I (13)

For the diffuser surface:

1+ 04)0

particularly, for K=l, one may use the more exact equation:

___ (___)_ _ - (14)



RC For the interior points:

____ - - _____ + -- _

4. d(15)

and particularly for L = 1, one may use more exact equa-

t iOn:

- ut -, I ( 5 )

where the coefficients of velocities (u/uo), in spite of

their apparent complication~can be determined numerically

for a given diffuser and a given flow quite easily and rap

idly.

Three graphs are enclosed - 1 to 3 - (see pg.60/62),

which show the u -velocity distribution, found by means of

the above described method. The angles 9 are: 0,025 radi-

ans, 0,05 radians and 0,145 radians; f3 is assumed equal to

1, and the segment m varies from 0,2 y, for initial points

to 0,8 \, for last points of net. The computations were

performed in the region 0 _ x 1 16 yo . The dependent va-

riable is , /UQ



10. AN OUTLINE OF THE ANALYTICAL SOLUTION IN THE CASE OF A

STRAIGHT LINE DIFFUSER.

The method described in the preceding section fur-

nishes a possibility of finding in a simple way numerical

results for the velocity distribution along the surface of

a straight line diffuser. It doesn't, however, determine

the analytical form of this solution, nor its relation

with the angle E.

In order to answer this question, let us assume2 for

the sake of argument, that the diffuser extends downstream

to infinity. Obviously, in the case of supersonic flow,

this does not restrict the generality of a solution.

Let us call u(x) a function of x which represents

the ut-velocity distribution under investigation along the

sUrface of the diffuser. The value of this function at the

nose point and at infinity can be immediately established.

In fact, at the nose point, as it was already shown

in the preceding section, the velocity u(o) (which will

be, as earlier, indicated by uo ) is equal to the corre-

sponding velocity in a two dimensional deflection? that is:

As to the velocity u- (,) (which will be indicated as

uc , it is possible to use a more intuitive similarity or
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"scale effect" reasoning. Consider at first that the

length of the diffuser is limited and equal to a (see fig-

ure 8). The radius of its nose point is yo . If we now ex-

tend _L to infinity, but choose the scale of the drawing

such that this length remains always the same, then yo (in

the figure) will tend to zero, becoming zero when c= o.

In this case we obtain a cone. Thus the velocity on the

surface at infinity for a given supersonic flow is unique-

ly defined, since the velocity of the surface of a cone

does not depend on the position of the point but only on

the angle E.

YO

Fig.8

One can obtain this velocity from appropriate plots,

or from cone tables, or approximately (for small values of

6 )n

tnj
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In order to establish the form of the function u(K)

for values O(x <oo , it is convenient to assume an -uxi-

liary function:

((e,) - - (16)
0Ao -A 00

which, independently of 0 and I for x = o and x =

admits the following values:

_r0 G P ,(A*- LL _
o ( o,eop) o_ I

tko - cc

The behavior of the function Y for other values of

x is - for the time being - unknown. It will be investigat

ed, however, in the next sections. Once the function

V (xe J3) is established, finding of the function u.(A'

becomes trivial, because from equation (16):

U(x) = U (U6-U)'( (YeP) (17)

We see, from equation (17), that the function 0' has

a very simple physical interpretation: it indicates the man

ner in which the transition from two dimensional flow at
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the nose point ( 0= 1= Uo ) to three dimensional

conical flow at infinity C 0 = 0 ". LL(A) = u .. ) is per-

formed along the surface of straight line diffusers,

11. DETERMINATION OF THE LD4IT OF THE FUNCTION 0' AS THE

ANGLE e APPROACHES ZERO.

When e 0 , the flow is undistrubed and the func-

tion (r has, in this case, an undetermined value:

y (x.O, ) 0

Regardless of this, as will be proved, the limit of

this expression exists. Let us indicate it:

O(Y,) = Litm Y((,e,p)

To prove its existence, let us note, that

EIm O(,e, ) ' L4 - o

Li e .oo le- LLO

0-0 rae

Using L'Hospital rule, we have.:
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Limo L - k- LeMLG)

from which

tlm O=×0, : tr !! (:18)

6-0 e-o UO

The function kOVU. can be calculated numerical-

ly by means of equations (13), (1l), (l')) (15) and (a.5').

We recall that all these equations are determined when 0-

and have the following limits when 0=0 :

FA For L = 0:

[ *o]-i (19)

F For- = R (K #0)0

L uo, i -

and particularly for K 1

-F Fo (20?' )

]For L*R; L*O
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____., Z2+ (R-L 4 MO-~ 2.-4(R-L- {i* 72~ -r*Uj fUL-1;-]
U[o] + Z+(R-L)m L- I 2+(R-L)ml -A l (21)

and particularly for L = 1:

2(PI-) rfL*L 4-_;___tlU .P (21')r - ' -  +( )I ______ Ir~__ -~:ll (z,

PL -i) ' L-o Z+(R-1 m* LL - TJJ

where -
rnn-

Since all these equations are determined it is evi-

dent that the limit (18) exists and may be numerically cal-

culated at points Km by solving for U K;K / U ,

Moreover, it is clear, from the structure of the above equa

tions that this solution is a function of a parameter m*

= m/#jo . Thus, introducing a new variable:

to each point x = Km on the x axis, there will correspond a

point:

K K rr

on the axis. The values UK;/uo will be now subordi-

nated to the points Km* but as they depend only on the

choice of m* the function O0 can be expressed as a func-

tion of only one variable i . Thus:
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12. NUMERICAL EVALUATION OF THE FUNCTION O ( )

Substituting into equations (19-21) any numerical val

ue for rm and solving for UK;/u we shall obtain the

values of the function (cr(t) at the points = K or , The

following tables give the values of (T as a function of

for rna= 0, Ir and for mnt = 0.2 in the range 0 _4 J!

M!==O2 0~Q~ rr =O, Z nrr0.4

0 1 . 2,2 0419 -

0,2 0.907 - 2,L 0.394 0.394

0,4 o.826 o.825 2,6 0.371 -

0,6 0.756 - 2,8 0.351 0.351

0,8 o.694 o.693 3,0 0.332 -

1,0 o.640 - 3,2 0.315 0.315

1,2 0.592 0.592 3,4 0.299 -

1,4 0.549 - 3,6 0.285 0.285

1,6 0.511 0.511 3,8 0.271 -

1,8 0.477 - 4 0.259 0.259

2 o.447 oLh7
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Substituting for m* values less than 0,2 one will not

obtain any changes in the first three decimal points of the

function O (,) . The result obtained for rru= 0,. can be

therefore considered as a final one for the first three dec

imal places.

For greater values of ,( 4),it is necessary to in-

crease the value of m* . Although such results for

at small values of K are always determined with relatively

greater error, as K increases a tendency towards "self cor-

rection" is observed. Thus, combining different results

(with different values of m*), it is possible to reproduce

relatively exact values of o-( )

These values are:

5 0.206 10 0.104

6 0.175 20 0.051

8 0.151 O 0.025

From the last results a tendency can be distinctly

seen for the function O( ) to approach -. for great val-

ues of ,

Graph 4 showb the shape of the function O ( ) in the

region 0 _ 4 16.
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13. THE SUCCESSIVE ANALYTICAL APPROXIMATIONS OF THE FUNC-

TION 0-(J).

Let us solve the system of equations (19-21') for

uK-k(K = Z; ; .. ) , without substituting any numerical val

ue for mr . These solutions will be, thus, functions of

rrx ; let us indicate them T (mo) ; 7j( ') ; . Generally,

each function TK(fl.*) determines approximately (with accu-

racy increasing with K ) the value of the function -(O) at

point = K m* . Thus, for each concrete value of K we

have:

0"(Kn,,*) (n'

But, as the value Km* (for concrete K ) is not fixed and

may admit any arbitrary value we have:

So, the sequence of the functions: 1() ;T

/3) ; _ represents the successive, more and more accu

rate approximations of the function r(j)

In the case of K=j one obtains:

+~T~TV Ij i+j
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Expanding the value of into power series

and keeping only the first two terms, one obtains immediate

ly:.

as a first approximate of the function

Choosing K=i the functions 7 become at once

very complicated. For instance, already for K = ? , there

is:

5 6(3

For practical purposes, the approximation given by

equation (22) is quite adequate. Being very simple, it pro

vides at the same time quite good accuracy, especially in

the range 0 _ S ! ; this may be demonstrated by a com-

parison with the yalues of the function '(%) given in

section 12.
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S O'(Q (1~~' ~cr(o) (+~)

0 1 1 2,2 0.419 0.416

0,2 0.907 0.907 2,4 0.394 0.391

0,4 o.826 o.826 2,6 0.371 0.367

0,6 0.756 0.756 2,8 0.351 0o3Lt6

0,8 o.694 o.694 3 0.332 0.327

1 0.64 o.64O 3,2 0.315 0.309

1,2 0.592 0.592 3,4 0.299 0.292

1,4 0.549 0.549 3,6 o.285 _0.277

1,6 0.511 0.510 3,8 0.271_ 0.263

1,8 0.477 0.476 4 0.259 0.250

2 0.447 0.444

The behavior of the function cY(o).for large values

of 5 may be investigated by means of its higher approxi-

mations: 7-(/ 2 ) 5 T3 (1/3). .... ; it can be shown that they

all approach, (for large values of S ), the functions t-

where _. varies, depending on K ; as to the function (()

itself, it seems from numerical values given in section 12,

that C=i I i.e. that 0-( ) approaches, for large values of

5 the function -i ( this wili be confirmed in next sec-

tions).

The comparison between the function cr(O) and its

first approximation [I,'-ff'or large values of 5 , shows

that both functions approach zero; however, the former does
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it like the function - while the Jatter as 16 t- ..Thus,

the absolute error:

which, as can be established, is always less then 0.025,

will also approach zero for large values of . The rela-

tive error will, of course, tend to infinity. For practi-

cal computations of the uL-velocity, however, with certain

restriction, it will have no major effect (see section 17).

Graph 5 shows the comparison between the functions

(1( - 1 4 ) and in the range O!- - 6

lL . THE OPERATIONAL FORM OF THE FUNCTION Cr( )

It is possible to obtain the exact analytical repre-

sentation of the function O (Xj by means of operational

calculus.

For this purpose one will use the transformation:

0o

F(P) - P f ) Y, (24)
0

whiLch will be denoted by the symbols:

F (p) 9 wl do]

The inverse transformatibn will be denoted as:
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f - -[F (p)]

As it is well Iown the inverse transformation may

be determined,under certain restrictive conditionsby 
means

of the formula:

Xio v. (5)

3Y1[F(p)] S -

where x, must be chosen so that the line Re( W= X. pas-

ses to the right of all singularities of the integrand.

The function c(s) may be determined by solving the

differential equation for the perturbation potential 
(P in

three dimensional axially symmetrical flow:

+ - t - 2 !E - 0 (a6)

with boundary conditions

(u), 0 0 z 0 }(27)
(once it is assumed O-O 0 the second term of the sum

,+Ox will be omitted).
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Transforming equation (26) by means of equation (24)

with respect to the variable x , and taking into consider

ation that:

.pr -y i dz

and that the choice of the co-ordinate system is such that

for x = -0:

(f =0

one obtains the equation:

2 0 (28)-- z P[IT I+ P[I]- pP[Y] o(m

the solution of which is:

P [,p= Co(f yp) + C7 K.( p) ((p)



36

Submitting the boundary conditions to the -transforma-

tion P, one obtains:

-70

Applying the above conditions and taking into consid

eration that

~B[f--

one gets:

C-0

and finally:

P[ _ Ko eu (30)

The operational representation of the velocity u (xy)

with respect to x I is:
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-K=q].p P Ko.(f'pj (31)

The last result enables us immediately to establish

the o; -rat'ional form of the function 05( ) . In fact, com-

bining equations (18) and (31), one gets:

2[crLk]x-,F l Komvop (32)

i~e., the final result.

1.5. CALCULATION OF THE FUNCTION C(p) FROM ITS OPERA-

TIONAL FORM.

In order to find the function 0 (x ) one has to

perform the operation:

p- [o go! (33)
LK(pv.p)J

With this purpose the operation will be performed

f irst
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P-1 F4 0_ L (33')

L KI(p)J

i.e , the integral will be calculated

Xo+ L oC

f'(') ' dZ (33")

and next, "shift" formula of operational calculus will be

applied.

As it is known, the functions KoW and Ki(z) have

a logarithmic branch point at z = 0 ; besides this they

have no other singularities. goreover, the function K4 (z)

does not have any zeros in the region Iarl < it so the in-

tegrand of (33") is holomorphic therein.

As a result, we may write:

Ko( ) e._d = 0 (34)
K4z

where X = ABCDEFGHA is the path of integration, shown in

figure 9.
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B A

Fig. -9

Iff it is now assumed, that:

Y ,--p 0

r* 0

R -

then the path^K may be divided (in the limit) in the fol-

lowing marmer;

where:
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- is the path on the y axis from - co to +co leay

ing the point z = 0 to the left by means of the

semicircle with r--O

C' - is the semicircle of radius R-o traced from the

point z = 0 to the left of the y - axis

C' - is a circle of the radius r-O traced from the

point z = 0

- is the path from - o to 0 on the x axis, con-

sidering that: -x = reLn

if - is the path from 0 to - oo on the x axis, con-

sidering that: -x = re-

The behavior of the integral (33) along all these

paths will now be investigated.

a) We have:

fK) dz 0 (35)
CK i(z) -

which may be proved by means of Jordants theorem) taking

into consideration that:

( IK(71= ti (fz)e- =0

Z--0 7Kjz) iE00Z(j) Cz

b) The integral
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-because

K- i a- Kt(z)

- 2 eX[ .nl-l -±,, ;z- 0

c) In order to calculate the integrals

(] f __ ex Ko(' 9 ci
f- dz, -'-d

K,(I W - Kj( ) _

one uses the following rela-tions.:

Ko,(ze tui) = Ko' o L o(-z

thereforeT str t4 (Z

therefore, after a simple transformation:



LIZ

] ~K W - i I t(t) (t K ( (t) - tx
f KQ(t) + I' lj'() --- t

0t

Taking into consideration that

Ko (t) it(t + Kj (t) Io (t) t

it gives:

]-- I Kl It) -tIL(t) +it (I37)
0

d) Finally, as

K -(z -!-, dK__Z (38)
K. z2T L K4 (p)J

considering equations (34 + 38), one gets:

- [K_ m l - e-tx t
LF p)J f K (t) + n'1,(t) t

0

After applying the scale effect bf operational cal-

culus, the final result is:
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co tx
1F~~rv~ J e- - dt
K (VoP K.,2t (t) (39)

0

It is interesting to mention here that for 1o = 0

the vplue of e is 0, and, consequently, one ob-

tains Ol~,3) 0 , and therefore U(y -U +L04X)(Uzo4)= U

this osult is obvious, taking into considerations that fov

= 0 the perturbation body is a cone, and that A, is

( --- section 10) the. U.-velocity at a cone surface.

For the same. reason, when the curvature is infinite,

one has two dimensional flow. Therefore, substituting into

equation (39) the value ,o- , one must obtain:

00

which may be interesting even from the purely mathematical

viewpoint.

16. THE APPROXIMATE SOLUTION FOR (T(x,p) FROM ITS OPERA-

TIONAL FORM.

Considering the asymptotic expansions of the func-

tions Ko and Kj , one obtains for large values of z
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K) " 1- W 1-

Remembering that

the expansion of the function 0'(xp) for small values of

x (after considering the effect of scale) is:

vo4 -L-- [ ' r( 0)1-.,r) I~ +6 F1. 1Oz -

It is now possible to compare the present result with

the approximate solution given in section 13, formula (22).

Expanding this expression into power series, it results in:

20 Y[xUL4] - (40')
- - GL. J o, +jo

Both series (40) and (40') diverge only from the

fifth term.

Calculating now ( p for small valuesCalculatingL KowLK,,.('5ip) J

of p one obtains the asymptotic approximation of the func-

tion O(xo) for large x. The result is:
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or:

(Y(~ 5 )(41')

which was already supposed in section 13.

17. THE APPROXIMATE ANALYTICAL SOLUTION FOR THE FUNCTION

As known from section 10, equation (17), the func-

tion u .) , which represents the distribution of the

u -velocity along the surface of a straight line diffuser,

may be presented in the form:

Ll( W :: k0 + 0,(x, 9. p) (U. oLk~oo

where the symbol Lxo denotes the perturbation velocity at

the nose point of a diffuser (equal to the two dimensional

perturbation velocity deflected through the angle e ) and

- the corresponding conical perturbation velocity.

For small values of angle e , remembering that:

- x
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it is possible to replace 06,,) by the function .(,)

In this case, as a first approximation of the function (x)

one obtains:

LA(X) L L4. + CY(x,J3) (A - LkcO) (142)

Though, as it was mentioned, this formula is valid

first of all for the values (-0 , it may be used in a

relatively wide range of angles. This is due to the fact

that the value of (ua- ) in relation to uk decreases

with increasing values of e

For instance, for 0 = 100 (and $ = 1):

while for e = 20o ( f = 1):

Thus, when the angle e increases, the errors due to
replacement of Oxf,) by O(x,p) are compensated, be

cause lso in view of the fact that (, ,p ) the see

ond term on the right hand side of equation (44) - where

the errors are generated - is relatively much smaller than

the first one.

Finally, replacing 0 (x, ) by its approximation
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[I+ jl- _ in the range of 0 _4 L_- the error due to this

is absolutely neglegible.. In the range > 4 this error in-

creases, but since:

I < OOZ5

(see section 13), it may influence the numerical calcula-

tions only if:

(i) the diffuser is very long, and

(ii) the expression .°- is very great (which,as

was said in this section, takes place only if the

angle 0 is extremely small.

In conclusion, remembering that ,and un-

der the condition that (i) and (ii) does not hold, the

first approximation for the distribution of the u velocity

along a straight line diffuser is:

UW __U.0) Lko- Ltw (43)

In the case in which 0 is very small (for instance

when ( < 0.025 radians) and at the same time I is very

large, we can represent (L by:
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Lk 00 + -- k ob in the range

) -x _ r[y o (243')

-uoo+ ~~ 0yo ; for 4i.e.

LLCO~ + PY f oYl_ 4pyo

The enclosed graphs (6,7,8) compare the results for

LL (X) obtained by means of equations (13-15) for angles

91 = 0.025 radians Ot = 0.05 radians and 03 = 0.125 ra-

dians with those obtained by means of equation (43).

As can be seen, the agreement for all three angles is

quite good. Using the method of characteristics, the compu-

tation of (k(x) takres several hours, while using the equa-

tion (43), this time is restricted only to minutes.

18. THE DISTRIBUTION OF PERTURBATION VELOCITY IN THE SPACE

AROUND A STRAIGHT LINE DIFFUSER.

Taking into consideration the result obtained in sec-

tion 14, equation (31), the L. velocity around the straight

line diffuser in the case e-o may be presented in the

following operatio~nal form:

L o PK ( 44
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After considerations similar to those of section 15

it is possible to obtain:

CIO tX

co
LL(X~ f K Ayt ,-t)+ K, I9it)

where V' =

Expanding the function Ko(mp) into asymptotic se-
K,

ries, one gets.:

KK-t . (Ct-(- i)p 1- 4OLP -1 9+Ga+33c -zKt (p) 8 $-&- ¢z8 P -

7 5 Z7 a + 3 c49t a -5 (46)
P +

Submitting each term of (46) to the transformation

taking into consideration the "shift effect" and sep-

arately the "scale effect", one finally obtains:

+ I~o+

- [(85 2~'-0+g/z' .4-8 [P- O1--} (7
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where K.x--(y-y0 )

As can be seen from figure 10, the variable has a

very simple geometrical meaning. It represents, namelythe

distance, on the horizontal axis, between the point A (x,y)

and the first Mach line. It is possible therefore, to con-

sider it as the shifted x co-ordinate of the point. It is

obvious that for the diffuser surface the variable Y re-

duces itself to the variable x.

A(xy)

Fig. 10

It is evident that all points on the same Mach line

(see figure 10) have the same value for their co-ordinates

R ; especially, for the first Mach line, it is 3= 0 , and

therefore, formula (47) gives immediately:
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±

UoD V (48)

result which was already obtained) for a more general case,

in section 5, equation (8).

It is convenient, by analogy with the function

to define a function:

cr(7)_ , (,9(o49)

where and y is treated as a parameter. This

function is, of course, a generalization of the function

O (t) and may be treated as a limit of the function (con

pare equation 16):

(A ,e,p ,)) -

when 0 -0 , and y = const.

From (L7) and (48) one gets Immediately:

3+3-1 + 33+G -'49,-' (50)

As one should expect, in the limiting case 7 = lthe

variable T reduces itself to , and we have



52

which can be verified, comparing the formulae (50) and (40)

For 9 = 00 we have a second limiting case. For small

values of - the function O((,co) is determined by the

series:

1Aj 33T83T~(51)

and for arbitrary

' - p
00

The shape of the functions (Y(,) and (0 oo)

does not differ essentially. Both functions have the same

initial values (=l) and both approach zero, for large val-

ues of , as - The slope of O(7,i) at the point

0 is - and that of o is -

The functions Vfor 1 = const. differ still

less from the function 0'(,i) = Crfl - because their

values are situated between these two limiting cases (i.e.

S= 1 and 0 0 ). The functions O{,)= 0(t)

and (,co) , for values of 1 in the range between 0

and 1, are shown on the graph 9.
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19. THE ANGLE OF INCIDENCE

In the case of axial flow without an angle of inci-

dence, the angle between the flow direction and the dif-

fuser surface is constant for a given cross section. How-

ever, for the flow with an angle of incidence cc this is

no more the case. For this reason it is convenient now to

assume a cylindrical co-ordinate system xK, 1 such that

i) - the x axis cot..cides with the axis of the dif-

fuser

(ii) - the polar angle -u is chosen in such a manner

that the meridian plane which contains both

the direction of the undisturbed velocity, and

the x axis corresponds to the value i0' = 0 (see

figure 11).

ir

Fi. 11
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It is obvious that the angle of incidence 0(') of the

meridian component of the undisturbed velocity (for a merid

ian plane with an angle 'C ) is:

t OLrtc0((J) =t r~CxV 0 cS t'

(see figure 12)

Fig. 12

or, for small values of c- :

C( -) = c CO$ '

Naturally, the component of the undisturbed velocity

, normal to the meridian plane, is not disturbed by

the diffuser and, consequently, does not influence the po-

tential ' of the distrubed portion of the flow.

As is known from the theory of small disturbances for

a body of revolution, the part of the potential y which is

generated by the disturbances, in the case of a flow with
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an angle of incidence, can. be decomposed into two poten-

t ials:

1) the first one, p , equal to the corresponding po

tential of the flow without an angle of incidence,

and

2) the second one, or cross flow potential,

Y A -2co0S~

where A is to be obtained from the boundary condi-

tion, namely:

-- U, Cos

Taking into consideration that the operational form

of T is already known (see section 14) and can be repre-

sented as

P - B Ko( p)

(where b does not depend on r ), the following result can

be immediately obtained:

PET,] P[A ±Cos 7- A Cos 1P f

- CcOO~ Ki(qPrp)
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where C is the value to be obtained from the boundary con-

dition just mentioned. The operational form of this condi-

tion is:

- Ip CoS 1 [Ko(pr p)-K 2.(p rp)] -

=- CU " cos i

The value of C, resulting from the last formula, is

Pp'[Koq v-p) + K).(prp)]

and therefore:

p[ITll1 zoLUo, COO, K I (prp) (5-)

PP[Ko( rp) + Kz( rp)]

Recalling that:

and therefore:
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one obtains finally:

____)_ 2-1 ZKi(j,-p) Cos' ] (53)
&Lta. 3[Ko(, p+ K (

which is the operational representation of the additional

U'. velocity generated by the angle of incidence of the

stream.

The non-operational form of LLm(A) can be obtained

by a procedure analogous to that of section 15, It may be

performed by changing, in a suitable way, the path of in-

tegration of the integral involved in the operation -

or by approximate methods,, such as finding the asymptotic

expansions of the Bessel functions Ko , Kj and K ? for

large values of p

It is also possible to extend these results to the

whole space around the diffuser, and for a non-limiting

case of 9 = 0, by use of the same methods and considera-

tions analogous to those made in order to generalize the

results of the case without an incidence angle, as shown

in the former sections.

The only difference in comparison with the former
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methods will appear because of the singular points of the

functions K.(-) and K 2(j) . In view of these singular

points, it is necessary to take into consideration the re-

sidues of the integrand, while changing the path of inte-

gration n order to perform the operation W- in the

formula (53).
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